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Abstract. Starting with a simple Lagrangian for the electromagnetic field with broken gauge
symmetry, we derive an effective circuit Hamiltonian for a superconducting weak-link ring. The
energy eigenstates of this Hamiltonian exhibit sensitivity to both external magnetic flux and an
applied Faraday law voltage. We show that the flux periodicity of the rf SQUID ring, and
the voltage periodic behaviour found in ultra-small-capacitance weak-link rings, can be seen as
limiting cases of a more general phenomenon.

The operation of a radio frequency (rf) SQUID ring (a thick superconducting ring, containing
a single Josephson weak-link device [1]) as a very sensitive magnetometer is well understood
[2]. The response of the weak-link ring is periodic in an applied magnetic flux, with
period80 = h/2e ' 2× 10−15 Wb. It is the small size of this periodicity which gives
SQUID magnetometers their sensitivity as magnetic field sensors. However, it has also been
shown that some ultra-small-capacitance weak-link ring structures can show voltage periodic
behaviour [3] and be insensitive to a (static) applied magnetic flux. (This voltage dependent
behaviour is often termed the ‘charge mode’, to distinguish it from the flux dependent
‘flux mode’ behaviour [4].) This periodic voltage dependence is usually attributed to the
appearance of localized charge states around the weak link [5, 6], of the type which can
also occur in singly connected Josephson junctions [7, 8] and Josephson arrays [9]. Such
behaviour cannot be generated from the simple classical models [2, 10] or the macroscopic
quantum Hamiltonians generally used to describe (flux mode) weak-link rings [11, 12].
Instead, an alternative model needs to be constructed [13], often using localized charge states
as a basis [4]. The existence of the two types of behaviour, and the two types of theoretical
model, has often led to confusion over the imposition of the appropriate commutation
relation for a given system [14] (although this point has been discussed elsewhere [13]).

In this paper, we use a quantum mechanical model for the superconducting condensate
in superconducting weak-link rings [15] which can be used to obtain both voltage
periodic response and the flux periodic behaviour. Taking a simple Hamiltonian for the
electromagnetic field, where the U(1) gauge symmetry is spontaneously broken, we construct
an effective circuit Hamiltonian for a superconducting weak-link ring in terms of local
discrete-field operators [15]. We then impose the usual canonical commutation relations
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between the local operators and their conjugate momenta. The behaviour of this system is
discussed in the presence of an applied magnetic flux and an applied Faraday law voltage
(i.e. a time dependent magnetic flux). We demonstrate that a single model can be used to
obtain the usual (flux periodic) Hamiltonian for an rf SQUID ring, and voltage periodic
(charge mode) behaviour, associated with localized charge states. In this model, we find
that the two types of behaviour found in experimental systems may be limiting cases of a
more general phenomenon. We concentrate on the behaviour of the condensate degrees of
freedom, and do not discuss the behaviour of the (orthogonal) quasi-particle/normal fluid
degrees of freedom which are normally associated with dissipative processes [8]. However,
we will discuss the possible effect of general environmental degrees of freedom on the
condensate, and consider the transition from one mode to the other in an experimental
system [16].

The appearance of the superconducting condensate is associated with a broken
gauge symmetry [17, 18]. Inside the superconductor, the usual U(1) gauge symmetry
is spontaneously broken toZ2. Treating the electromagnetic fields as classical fields,
and solving the resultant field equations, can reproduce many of the features normally
associated with bulk superconductors [17]. However, this classical approach neglects the
fact that the fields are quantum electrodynamic in origin and should still obey the correct
canonical commutation relations [13, 19], albeit in a symmetry broken case. Taking a
simple Lagrangian density and imposing the correct constraints [20], in the Coulomb gauge
(∇ ·A = 0), we obtain a Hamiltonian density of the form [15]

H = ε0E
⊥2

2
+ µ

−1
0

2
(∇×A)2− ρ M

−1ρ

2ε0
+ 1

2

(
h̄2

2νq2

)
ρ2

N +
Nγ q2

h̄2 (∇φ −A)2 (1)

whereq = 2e, E⊥ = −∂A/∂t is the transverse part of the electric field,M ≡ ∇2 andρ =
−(2N νq2/h̄2)(∂φ/∂t+A0) is the real (Gaussian) charge density. This Hamiltonian density
can be obtained from the time dependent Ginzburg–Landau model [21, 22], expressing the
complex order parameter as9 = √N exp(iqφ/h̄) and taking the condensate densityN
to be a smooth, static field (i.e. ignoring the derivative terms forN ) [15]. (The number
density is often associated with topological excitations (vortices) [21] which are difficult to
describe with a quantum mechanical Hamiltonian.) Comparison with the Ginzburg–Landau
model givesγ = h̄2/2me and ν = 3γ /v2

F (where vF is the Fermi velocity in the non-
superconducting material) [22]. For low electric and magnetic fields, the number density
is approximated byN ' (a/b) wherea andb are the usual Ginzburg–Landau coefficients
[21].

The general form of the Hamiltonian comes from the broken gauge symmetry [17],
but the values of the parameters (γ , ν andN ) are motivated by comparison with the time
dependent Ginzburg–Landau theory. This, in turn, can be derived from the BCS theory,
where the order parameter is proportional to the energy gap function [23]. It is applicable
far below the critical temperature, where the energy gap function can be shown to obey a
wave equation [24], and holds as long as fluctuations are over length scales which are long
compared to the coherence lengthξ and on time scales longer than

√
3ξ/vF [25].

The canonical commutation relations for this Hamiltonian are given by [13, 15]

[E⊥i (x), Aj (y)] =
ih̄

ε0
5ij δ(x − y) (2)

where5ij = δij − M−1 ∂i ∂j , and

[ρ(x), ∂iφ(y)] = ih̄ ∂iδ(x − y). (3)
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In the absence of broken gauge symmetry, the electromagnetic field has two physical
fields (the two polarizations of the transverse photons). The scalar and longitudinal photons
are said to be unphysical. Their dynamical effects cancel out, leaving only the Coulomb
contribution to the total energy [19]. This is also true for a normal conductor, even if it has
an infinite conductivity [17].

In the superconductor, however, we can see that Hamiltonian (1) contains three
dynamical fields. In addition to the transverse fields, theφ-field (the Nambu–Goldstone
field [17]) also has physical excitations, related to the longitudinal and scalar photons by
the fact that its conjugate momentum is the real (Gaussian) charge densityρ. It has already
been noted that this additional field gives rise to a non-geometrical capacitance (the fourth
term in (1)) [15], and that this self-capacitance can dominate the behaviour of some model
SQUID rings [26]. The fact that such behaviour cannot occur in a normal conductor means
that conventional electrical circuit models for superconducting circuits must be treated with
extreme care.

Given a particular circuit, and assuming that the approximations used to obtain (1)
are appropriate, we should be able to use this Hamiltonian to solve for the behaviour of
the system. To solve the full-field Hamiltonian for the circuit modes (longitudinal and
transverse) of a particular circuit would be an enormous task. Instead, we confine ourselves
to discussing a few low-energy modes, which we can represent in terms of effective circuit
elements and local discrete field operators.

The circuit that we wish to consider is a thick (compared to the London penetration depth
[21]) niobium ring, containing a Josephson point contact weak link [2]. Well below the
critical temperature (Tc) and the lower critical field (Hc1) (and subject to the other conditions
discussed above), the superconducting condensate in niobium should be reasonably well
described by the Hamiltonian density (1) with purely local interactions. BelowHc1, niobium
(a type II superconductor) will be in the Meissner state, and whatever vortices are present
should not influence the dynamics of the system. Other materials, particularly ones which
are better described by Pippard’s equation [21], will generally require the inclusion of
non-local interactions [17], but these are not considered here.

We divide the ring up into three segments: two segments for the point contact (n = 1, 2)
and one for the bulk ring (n = 3). We require at least two regions of weak superconductivity
to allow for spatial localization of the real (Gaussian) charge (see below). The fields in
each segment will be described by a transverse electric flux (Qn), a magnetic flux (8n), a
Gaussian charge (qn) and a phase difference (1φn), defined by [13, 15]

Qn = ε0

∫
SQn

dS ·E⊥(x) (4)

8n =
∫
S8n

dS ·B(x) =
∫
∂SQn

dl ·A(x) (5)

qn =
∫
Vn

dVρ(x) (6)

1φn =
∫
cn

dl · ∇φ(x) (7)

where the open surfaces (SQn
andS8n ), volumes (Vn) and curves (cn) are defined in figure 1.

The Gaussian charge is quantized in units ofq = 2e (the charge of one Cooper pair [21]), so
that the charge operator can be represented byqn = 2eNn, whereNn is a number operator,
and1φ1 is an angular operator (period= 80) [15]. The electric flux operatorQn, whilst
it does have the units of charge, is a continuous operator and does not correspond to a
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Figure 1. Schematic diagram of a weak-link ring, with two small regions of weak
superconductivity (n = 1, 2) and one large bulk ring (n = 3).

distribution of real charge (it is sourceless). The only non-zero commutation relations are

[Qn,8m] = ih̄δnm

[qn,1φm] =


ih̄ if m = n
−ih̄ if m = (n− 1)

0 otherwise.

The resultant Hamiltonian is given by

H =
(
Q2

1

2C(t)1

+ 82
1

231

)
+
(
Q2

2

2C(t)2

+ 82
2

232

)
+
(
Q2

3

2C(t)3

+ 82
3

233

)
+ q2

2

2C22
+ q2q3

2C23
+ q2

3

2C33

+ h̄Ic1

q

[
1− cos

(
2π1φ1

80

)
−
(
q81

h̄

)
sin

(
2π1φ1

80

)
+ q

282
1

2h̄2

]
+qIc3

2h̄
(1φ3−83)

2+ h̄Ic2

q

[
1− cos

(
2π(1φ1+1φ3)

80

)
−
(
q82

h̄

)
sin

(
2π(1φ1+1φ3)

80

)
+ q

282
2

2h̄2

]
(8)

where the transverse field energies have been parametrized in terms of effective inductances
(3n) and transverse capacitances (C(t)n ). We have also used the fact that the total charge
contained in the ring and the total phase change around the ring are constant,

q1+ q2+ q3 = 0

1φ1+1φ2+1φ3 = m80

to removeq1 and1φ2 (the total charge is taken to be zero, andm is an integer). The
capacitances for the real charge are combinations of the longitudinal (Coulomb) capacitance
matrix elements(C(l))nm and the condensate self-capacitancesC(sc)n = 3qIc(1x)2/h̄v2

F
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(where the length of the segment is1x), and are given by

1

C22
= (C−1

(l) )11− (C−1
(l) )12− (C−1

(l) )21+ (C−1
(l) )22+ 1

C
(sc)

1

+ 1

C
(sc)

2

1

C23
= 2(C−1

(l) )11− (C−1
(l) )12− (C−1

(l) )21− (C−1
(l) )13− (C−1

(l) )31+ (C−1
(l) )23+ (C−1

(l) )32+ 2

C
(sc)

1

1

C33
= (C−1

(l) )11− (C−1
(l) )13− (C−1

(l) )31+ (C−1
(l) )33+ 1

C
(sc)

1

+ 1

C
(sc)

3

.

Now we let the critical current for the bulk segment tend to infinity to obtain the
constraint1φ3 ' 83. To impose this constraint consistently, we must revert to the classical
Hamiltonian, put1φ3 = 83 and d(1φ3)/dt = d83/dt , and then re-quantize [26]. Doing
this, we obtain

H =
(
Q2

1

2C(t)1

+ 82
1

231

)
+
(
Q2

2

2C(t)2

+ 82
2

232

)
+ 82

3

233
+ q2

2

2C ′22

+ q2Q
′
3

2C ′23

+ (Q
′
3)

2
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+h̄Ic1
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[
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(
2π1φ1
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)
−
(
q81

h̄

)
sin

(
2π1φ1

80

)
+ q

282
1

2h̄2

]
+h̄Ic2

q

[
1−cos

(
2π(1φ1+83)
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)
−
(
q82

h̄

)
sin

(
2π(1φ1+83)

80

)
+ q

282
2

2h̄2

]
(9)

where−Q′3 = −q3 − Q3 is the new conjugate momentum to83 (giving [Q′3,83] = ih̄)
and is taken to be a continuous operator. The new capacitances areC ′33 = C33 + C(t)3 ,
C ′23 = C23(1+ C(t)3 /C33), and

C ′22 =
(

1

C22
+ C

(t)

3 C33

4C2
23(C33+ C(t)3 )

)−1

.

If we allow the critical current of one of the weak-link segments (Ic1 or Ic2) to tend to
infinity, the phase variable (1φ1) will become localized and the Hamiltonian reduces to the
usual macroscopic Hamiltonian for the rf SQUID ring [11, 12] and the system displays only
flux periodic behaviour [26]. The introduction of two weak-link segments allows for the
localization of charge, both in charge-phase space and in real space. However, the critical
current of a real superconductor is not infinite. This approximation merely facilitates the
introduction of the constraint1φ3 = 83. A more rigorous approach would include the bulk
segment and the weak-link segments on an equal footing (with longitudinal and transverse
fields for each). This would allow localized charge states to exist in the bulk superconductor.
Such excitations would violate the constraint imposed above but would tend to have a very
high energy. Having restricted ourselves to a few, low-energy circuit modes, the additional
simplification is valid.

We note that, in contrast to other models based on normal electrical circuits (with
unbroken symmetry) [27], the two-weak-link Hamiltonian (9) will give energy states
corresponding to physical excitations of the longitudinal and the transverse fields. The extra
degree of freedom comes directly from the broken gauge symmetry. It is this longitudinal
degree of freedom, together with the quantization of charge in units ofq = 2e, which gives
rise to voltage periodic behaviour.

Having taken the critical currents for then = 1 andn = 2 segments to be relatively
weak, we assume that81 and 82 are fairly well defined and that we can treat the
coupling between the phase across each weak link and the transverse fields surrounding
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it as negligible. If we also include an external (possibly time dependent) magnetic flux
(8ex(t)) coupling to the bulk ring, we obtain

H = q2
2

2C ′22

+ q2Q
′
3

2C ′23

+ (Q
′
3)

2

2C ′33

+ (83−8ex(t))
2

233

− h̄Ic1

q
cos

(
2π 1φ1

80

)
− h̄Ic2

q
cos

(
2π(1φ1+83)

80

)
(10)

where we have dropped any unnecessary constants and the (weakly coupled) harmonic
oscillator terms. This Hamiltonian is then the simplest which describes both the transverse
field excitations of the bulk ring and localized charge states around the point contact. We
have a transverse field commutator ([Q′3,83] = ih̄) between two continuous operators, and
a longitudinal field commutator ([q2,1φ1] = −ih̄) between a number operator (×q) and an
angular operator (with period= 80).

Next, we perform a time-dependent unitary transform to obtain a new Hamiltonian
[13, 28]

H ′ = U †HU − ih̄U †
∂U

∂t

whereU = exp(i8ex(t)Q
′
3/h̄), giving a Hamiltonian which contains an applied Faraday

law voltageVex = −∂8ex/∂t and an external flux8ex(t),

H ′ = q2
2

2C ′22

+ q2Q
′
3

2C ′23

+ (Q
′
3)

2

2C ′33

− q ′3Vex +
82

3

233

− h̄Ic1

q
cos

(
2π 1φ1

80

)
− h̄Ic2

q
cos

(
2π(1φ1+83+8ex(t))

80

)
. (11)

We note that, although this Hamiltonian is similar to one given in [13] with only one
cosine term, the additional tunnelling term cannot be removed by lettingIc1 or Ic2 tend to
zero, since this would also effect the self-capacitance of the segment,C(sc) → 0. Taking
the critical current for either segment to be zero would lead to an additional constraint,
q1 = 0 or q2 = 0. This effectively removes the additional degree of freedom, leaving a
Hamiltonian which is again periodic in applied magnetic flux (although the periodicity will
be (1+ [C−1

22 + (2C23)
−1]/[C−1

33 + (2C23)
−1])80, rather than the usual80).

Taking this Hamiltonian, we begin by considering two limiting cases: ¯hIc1/q � q2/C ′22,
and h̄Ic1/q � q2/C ′22. (Without loss of generality, we takeIc2 to be smaller than
Ic1, since we can interchange the role of each term by another unitary transformation
U ′ = exp(i(8ex(t)+83)q2/h̄).)

The first case, ¯hIc1/q � q2/C ′22, will tend to give low-energy states which are localized
in phase. In this limit, the segment is no longer weak and will act more like a bulk
superconductor. Strictly speaking, we should use (9) rather than (11). In either case,
where1φ1 is very well defined (around zero or81, respectively) the model reduces to the
well known rf SQUID Hamiltonian [26], which has been extensively discussed elsewhere
[11, 12]. The time independent Schrödinger equation for this macroscopic Hamiltonian gives
energy levels (Eκ(8ex)) which are80 periodic when a static (or quasi-static) magnetic flux
is applied. These flux dependent levels can be probed experimentally through theirκ

dependent magnetic susceptibilitiesχκ(8ex) [12], where

χκ(8ex) = −33
∂2Eκ(8ex)

∂82
ex

is a dimensionless quantity. In these well defined phase states, the quantum fluctuations in
the charge (q2) will be too large to discern any voltage periodic effects from the quantization
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of real charge in units ofq = 2e. (Localized charge states will exist, but they will have very
high energies.) The ring will show voltage dependent behaviour, but only to the extent that
the applied voltage can be seen as a source of time dependent magnetic flux. For slowly
varying (adiabatic) magnetic fluxes (i.e. low voltages) the system will remain in one energy
state, sweeping out the periodic response. For higher voltages, the magnetic flux will be
non-adiabatic and the evolution will be more complicated.

Forh̄Ic1/q � q2/C ′22, the phase will be less well defined, and the low-lying energy states
will tend to be more strongly localized in real charge. As the system becomes delocalized
in phase, such that〈1φ2

1〉 & 82
0, we would expect the system to lose sensitivity to magnetic

flux. Any physical quantity, related to an expectation value, must now be averaged over
more than one period of80. The Hamiltonian will still be periodic in static magnetic flux,
with the same periodicity, but the amplitude of the response will reduce, giving resultant
energy levels which are flat in8ex . Theκ dependent magnetic susceptibility will therefore
vanish (see figure 2).

This is the regime in which we would expect to see voltage periodic behaviour, and
indeed this is the case. Rather than applying a static magnetic flux, we now apply a linearly
ramped flux8ex(t) = −Vext+8(dc)

e (where8(dc)
ex is a static (dc) offset). This gives a static

(Faraday law) voltage, which can be used to probe the electric susceptibility of the ring
[29],

χ(E)κ (Vex) = 1

C

∂2Eκ(Vex)

∂V 2
ex

which is κ dependent and periodic in the applied voltage (period= 2e/C).
In the presence of the static voltage, we can rewrite the Hamiltonian (usingQ′′3 =

Q′3− C ′22Vex).

H ′(t) =
[
(q2− CVex)2

2C ′22

− h̄Ic1

q
cos

(
2π1φ1

80

)]
+ (Q

′′
3)

2

2C ′33

+ 82
3

233
+ q2Q

′′
3

2C ′23

−
[
C ′22

2

(
C ′33

2C ′23

)2

+ C
′
33

2

]
V 2
ex

−h̄Ic2

q
cos

(
2π(1φ1+83− Vext +8(dc)

ex )

80

)
= H ′0+H ′I (t) (12)

whereC = (C ′22C
′
33/2C

′
23). Using this form of the Hamiltonian, we can calculate the

electric susceptibility for the lowest few energy levels. (The fact that the Hamiltonian is
time dependent complicates the situation. However, given thatIc2 is comparatively small,
we can treat the time dependent termH ′I (t) as a perturbation [28]. Provided that the
frequencyω = (2πVex/80) does not correspond to a transition between energy levels (i.e.
it is far off resonance), we can average over one period of the time dependent term.) As
an example, we consider a macroscopic superconducting ring and take the longitudinal
(Coulomb) capacitances to beC(l) ∼ 10−12 F, with a transverse capacitanceC(t)3 ∼ 10−15 F
and inductance33 = 3× 10−10 H [26]. The condensate self-capacitancesC

(sc)

1 andC(sc)2
will be proportional to the values of the critical currents (Ic2 < Ic1). Using,vF = 106 m s−1,
(1x1) = (1x2) = 1 µm, with Ic2 = 0.2 µA and Ic1 = 2 µA [15], we obtain values for
the self-capacitancesC(sc)1 = 1× 10−16 F andC(sc)2 = 1× 10−17 F. This gives approximate
values forC ′33 ' C(t)3 ∼ 10−15 F, C ′23 ' C(t)3 /2∼ 5× 10−16 F and

C ′22 ' C '
(

1

C
(sc)

1

+ 1

C
(sc)

2

)−1

' 10−17 F.
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Using these parameter values, we can calculate the magnetic and electric susceptibilities
of a macroscopic ring (using a basis consisting of harmonic oscillator states for the transverse
field and discrete charge states for the longitudinal field). In figure 2, we show the ground
state (κ = 0) magnetic susceptibility forIc1 = 2, 8 and 20µA. We notice that the flux
periodicity of the ring does remain, but that the response is very much suppressed asIc1

is reduced and the low-lying energy states become delocalized in phase. ForIc1 = 2 µA,
we also calculate the voltage periodic electric susceptibility of the lowest three energy
states (κ = 0, 1, 2) (see figure 3). In this case, the very weak response to an applied
magnetic flux (shown in figure 2) is in marked contrast to the very strong features shown
in the electric susceptibility. The similarity between the electric susceptibilities of the
first few energy states is due to the weak coupling between the transverse field and the
longitudinal field for the parameter values used in the calculation. The lowest-energy
excitations correspond (approximately) to excited states of the transverse field, and the
ground state of the longitudinal field. For other parameter values, where the coupling
between the fields is stronger, the electric susceptibilities will exhibit much more structure.

Figure 2. Ground state (κ = 0) magnetic susceptibility against static magnetic flux8
(dc)
ex for a

macroscopic ring withIc1 = 2, 8 and 20µA (other parameter values are given in the text).

It is clear from figures 2 and 3 that our example ring can exhibit both voltage and
flux dependent behaviour. This result is a general feature of the symmetry broken model.
However, we also see that where we have very sharp features in the electric susceptibility,
we obtain very weak features in the magnetic flux response. To this extent, the voltage
periodic charge mode and the flux periodic flux mode can be thought of as conjugate modes
of operation [4]. One is associated with localized charge states around the weak link and the
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Figure 3. Electric susceptibilities against a static applied voltageVex , calculated for the first
three energy levels (κ = 0, 1, 2) with Ic1 = 2 µA (κ = 0, dashed line;κ = 1, diamonds;
κ = 2, solid line; all other parameter values are as given in the text).

other with localized phase states. However, the situation is not quite as simple as previously
stated [4], since the localized charge states found in the charge mode are physical excitations
of the longitudinal electromagnetic field [13] (due to the broken symmetry [15]) and the
flux mode is associated with the transverse field states.

The other interesting result we obtain from this model is that the flux and charge
modes are limiting cases: ¯hIc1/q � q2/C ′22, andh̄Ic1/q � q2/C ′22 respectively. Between
these two extremes, we should obtain a more general type of behaviour, where the
superconducting ring is sensitive to static magnetic flux, but still retains some of the voltage
periodic behaviour found in the charge mode. If this intermediate regime can be probed
experimentally, it should provide a rich source of new structure for quantum mechanical
superconducting circuits, and may provide a valuable insight into the interplay between
microscopic quantum effects (localized charge states) and macroscopic quantum effects
(macroscopic flux states) in superconductors.

So far, we have only discussed the behaviour of the superconducting condensate. We
have not mentioned the quasi-particle/normal fluid degrees of freedom, which become
important once above the superconducting energy gap [21]. The inclusion of these effects is
beyond the scope of this paper, but their effects have been extensively discussed elsewhere
[8, 30]. In addition, any experimental system must also allow for other (extraneous)
environmental degrees of freedom. It is well known that different environmental systems
can effect the evolution of quantum mechanical circuits in different ways [31]. One effect
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can be to shift the effective capacitance of a circuit [8, 31] away from its actual (bare) value.
Since the behaviour that we have been discussing is dependent on the capacitive energy of
the weak link and the capacitive energy of the transverse electric field in the ring, we would
expect the electromagnetic environment to play a crucial role in determining the behaviour
of a real superconducting circuit. By introducing, or removing, additional environmental
degrees of freedom it may be possible to move from one regime to another by very carefully
controlling the capacitive energy of the weak link [16].

In conclusion, we have taken a quantum electrodynamic model with broken gauge
symmetry and constructed an equivalent circuit model for the superconducting condensate
in a weak-link ring. This model describes the transverse field states (which occur in normal
conductors) and the physical states of the longitudinal field (which do not). We have then
taken a specific example which can be used to describe the transverse excitations of the
bulk ring and the localized charge states of the weak link. The resultant Hamiltonian was
then used to obtain flux periodic magnetic susceptibilities and voltage periodic electric
susceptibilities, as limiting cases of a more general phenomenon. The flux dependent
behaviour was found to correspond to transverse field excitations in the presence of a
localized phase, whilst the voltage periodic behaviour was associated with localized charge
states of the longitudinal field. That this model can be used to generate the two modes
of operation that can be found in experimental weak-link rings [4] is very important; but
the fact that a more general regime (exhibiting some ‘charge mode’ and some ‘flux mode’
characteristics) may be realizable in experiment is potentially even more exciting.
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